Vectores

Ejercicio nº 1.

a) Si \(\vec{u} \) y \(\vec{v} \) son los siguientes vectores, dibuja \(2\vec{u} - \vec{v}, -\vec{u} + \vec{v} \) y \(-\vec{u} + \frac{1}{2} \vec{v} \).

![Diagrama del ejercicio 1](image1.png)

b) Las coordenadas de dos vectores son \(\vec{a}(2, -3) \) y \(\vec{b}\left(\frac{1}{2}, 2\right) \). Obtén las coordenadas de:

\[
-3\vec{a} + 2\vec{b}; \quad -\vec{a} + \frac{1}{2}\vec{b}; \quad \frac{1}{3}(\vec{a} - \vec{b})
\]

Ejercicio nº 2.

a) Dibuja los vectores \(\vec{u} - \vec{v}, -\vec{u} + \frac{1}{2}\vec{v} \) y \(2\vec{u} + 3\vec{v} \), siendo \(\vec{u} \) y \(\vec{v} \) los que muestra la figura:

![Diagrama del ejercicio 2](image2.png)

b) Dados los vectores \(\vec{a}\left(\frac{2}{3}, -1\right) \) y \(\vec{b}(3,-2) \), obtén las coordenadas de:

\[
-3\vec{a} + 2\vec{b}; \quad 2\vec{a} - \vec{b}; \quad \vec{a} - \frac{1}{3}\vec{b}
\]
Ejercicio nº 3.-

a) Si \(\vec{u} \) y \(\vec{v} \) son los vectores que muestra la figura, dibuja \(-\vec{u} + 2\vec{v}, \frac{2}{3}\vec{u} + \vec{v} \) y \(-\frac{1}{3}\vec{u} - \vec{v}\):

\[
\begin{pmatrix}
\end{pmatrix}
\]

b) Si las coordenadas de \(\vec{a} \) y \(\vec{b} \) son \(\left(\frac{2}{5}, -3\right) \) y \((-1, 3)\), obtén las coordenadas de los vectores:
\[
5\vec{a} - \frac{1}{5}\vec{b}; \quad -\vec{a} + 2\vec{b}; \quad \frac{1}{2}\vec{a} - \vec{b}
\]

Ejercicio nº 4.-

a) Los vectores \(\vec{u} \) y \(\vec{v} \) son los que muestra la figura. A partir de ellos, dibuja
\(-\vec{u} - \vec{v}, -2\vec{u} + \vec{v} \) y \(\frac{2}{3}\vec{v}\):

\[
\begin{pmatrix}
\end{pmatrix}
\]

b) Si las coordenadas de los vectores \(\vec{a} \) y \(\vec{b} \) son \((-2, 1) \) y \(\left(1, -\frac{1}{4}\right)\), obtén las coordenadas de:
\[
-3\vec{a} + 4\vec{b}; \quad -\vec{a} + \vec{b}; \quad \frac{1}{2}\vec{a} + 2\vec{b}
\]
Ejercicio nº 5.-

a) A la vista de la siguiente figura, dibuja los vectores:

\[-\vec{u} + 2\vec{v}; \quad \vec{u} + \frac{1}{2}\vec{v}; \quad \vec{u} - 2\vec{v}\]

![Diagrama ejemplo 1](image1.png)

b) Dados los vectores \(\vec{a} \left(-\frac{3}{4}, 2 \right)\) y \(\vec{b} \left(2, -2 \right)\), obtén las coordenadas de:

\[-\frac{1}{2}\vec{a}; \quad -2\vec{a} + \vec{b}; \quad -4\vec{a} + \vec{b}\]

Ejercicio nº 6.-

a) Escribe los vectores \(\vec{x}, \vec{y}, \vec{z}\) como combinación lineal de \(\vec{u}\) y \(\vec{v}\):

![Diagrama ejemplo 2](image2.png)

b) Escribe el vector \(\vec{a} \left(0, 17 \right)\) como combinación lineal de \(\vec{b} \left(\frac{1}{5}, 3 \right)\) y \(\vec{c} \left(-1, 2 \right)\)

Ejercicio nº 7.-

a) Expresa los vectores \(\vec{a}, \vec{b}\) y \(\vec{c}\) como combinación lineal de los vectores \(\vec{u}\) y \(\vec{v}\):

![Diagrama ejemplo 3](image3.png)

b) Expresa el vector \(\vec{x} \left(5, -2 \right)\) como combinación lineal de \(\vec{y} \left(1, -2 \right)\) y \(\vec{z} \left(\frac{1}{2}, 2 \right)\).
Ejercicio nº 8.-

a) Escribe los vectores \(\vec{a}, \vec{b} \) y \(\vec{c} \) como combinación lineal de \(\vec{x} \) y \(\vec{y} \):

b) Halla las coordenadas del vector \(\vec{w} (1, 0) \) con respecto a la base formada por

\[
\vec{u} \left(-\frac{1}{2}, 1 \right) \quad \text{y} \quad \vec{v} (-3, 2)
\]

Ejercicio nº 9.-

a) Halla las coordenadas del vector \(\vec{u} (-2, -3) \) con respecto a la base formada por los vectores

\[
\vec{v} \left(2, \frac{1}{3} \right) \quad \text{y} \quad \vec{w} (1, -1)
\]

b) Expresa los vectores \(\vec{x}, \vec{y}, \vec{z} \) como combinación lineal de los vectores \(\vec{a} \) y \(\vec{b} \):

Ejercicio nº 10.-

a) Expresa el vector \(\vec{x} (4,1) \) como combinación lineal de los vectores \(\vec{y} (2, -3) \) y \(\vec{z} \left(\frac{1}{2}, 1 \right) \).

b) Escribe los vectores \(\vec{a}, \vec{b} \) y \(\vec{c} \) como combinación lineal de \(\vec{u} \) y \(\vec{v} \):
Ejercicio nº 11.-

Dados \(\vec{x}(5, -4), \vec{y}(3, 2) \) y \(\vec{z}(1, k) \):

a) Halla el valor de \(k \) para que \(\vec{x} \) y \(\vec{z} \) formen un ángulo 90°.

b) Halla un vector unitario con la misma dirección y el mismo sentido que \(\vec{x} \).

Ejercicio nº 12.-

Si \(\vec{a}(1, -3) \) y \(\vec{b}(m, 2) \):

a) Halla el valor de \(m \) para que \(\vec{a} \) y \(\vec{b} \) sean perpendiculares.

b) Calcula el ángulo formado por \(\vec{a} \) y \(\vec{c} \) siendo \(\vec{c}(4, 2) \).

Ejercicio nº 13.-

Dados los vectores \(\vec{u}(-1, 4), \vec{v}(3, m) \) y \(\vec{w}(2, -3) \):

a) Calcula \(m \) para que \(\vec{u} \) y \(\vec{v} \) sean perpendiculares.

b) Halla el ángulo que forman \(\vec{u} \) y \(\vec{w} \).

Ejercicio nº 14.-

Considera los vectores \(\vec{x}(a, 3) \) e \(\vec{y}(-1, b) \). Halla los valores de \(a \) y \(b \) para que \(\vec{x} \) e \(\vec{y} \) sean perpendiculares y que \(|\vec{x}| = 5 \).

Ejercicio nº 15.-

a) Halla el ángulo que forman los vectores

\[
\vec{a}\left(\frac{3}{5}, \frac{-4}{5}\right) \quad y \quad \vec{b}(1, 1)
\]

b) ¿Cuál sería el valor de \(x \) para que el vector \(\vec{u}(1, x) \) fuera perpendicular a \(\vec{a}\left(\frac{3}{5}, \frac{-4}{5}\right) \)?
Soluciones ejercicios de Vectores

Ejercicio nº 1.-

a) Si \(\vec{u} \) y \(\vec{v} \) son los siguientes vectores, dibuja \(2\vec{u} - \vec{v}, -\vec{u} + \vec{v} \) y \(-\vec{u} + \frac{1}{2}\vec{v} \).

\[\]

b) Las coordenadas de dos vectores son \(\vec{a}(2, -3) \) y \(\vec{b}\left(\frac{1}{2}, 2\right) \). Obtén las coordenadas de:

\[-3\vec{a} + 2\vec{b}; \quad -\vec{a} + \frac{1}{2}\vec{b}; \quad \frac{1}{3}(\vec{a} - \vec{b}) \]

Solución:

a)

b) \(-3\vec{a} + 2\vec{b} = -3(2, -3) + 2\left(-\frac{1}{2}, 2\right) = (-6, 9) + (-1, 4) = (-7, 13)\)

\(-\vec{a} + \frac{1}{2}\vec{b} = -(2, -3) + \frac{1}{2}\left(-\frac{1}{2}, 2\right) = (-2, 3) + \left(-\frac{1}{4}, 1\right) = \left(-\frac{9}{4}, 4\right)\)

\(\frac{1}{3}(\vec{a} - \vec{b}) = \frac{1}{3}\left[(2, -3) - \left(-\frac{1}{2}, 2\right)\right] = \frac{1}{3}\left[\frac{5}{2}, -5\right] = \left(\frac{5}{6}, -\frac{5}{3}\right)\)

Ejercicio nº 2.-

a) Dibuja los vectores \(\vec{u} - \vec{v}, -\vec{u} + \frac{1}{2}\vec{v} \) y \(2\vec{u} + 3\vec{v} \), siendo \(\vec{u} \) y \(\vec{v} \) los que muestra la figura:
b) Dados los vectores \(\vec{a} \left(\frac{2}{3}, -1 \right) \) y \(\vec{b} \left(3, -2 \right) \), obtén las coordenadas de:

\[
-3 \vec{a} + 2 \vec{b}; \quad 2 \vec{a} - \vec{b}; \quad \vec{a} - \frac{1}{3} \vec{b}
\]

Solución:

a)

b) \(-3 \vec{a} + 2 \vec{b} = -3 \left(\frac{2}{3}, -1 \right) + 2(3, -2) = (-2, 3) + (6, -4) = (4, -1)\)

\[
2 \vec{a} - \vec{b} = 2 \left(\frac{2}{3}, -1 \right) - (3, -2) = \left(\frac{4}{3}, -2 \right) - (3, -2) = \left(\frac{-5}{3}, 0 \right)
\]

\[
\vec{a} - \frac{1}{3} \vec{b} = \left(\frac{2}{3}, -1 \right) - \frac{1}{3} (3, -2) = \left(\frac{2}{3}, -1 \right) - \left(1, \frac{-2}{3} \right) = \left(\frac{-1}{3}, \frac{-1}{3} \right)
\]

Ejercicio nº 3.-

a) Si \(\vec{u} \) y \(\vec{v} \) son los vectores que muestra la figura, dibuja \(- \vec{u} + 2 \vec{v}, \frac{2}{3} \vec{u} + \vec{v}, \) y \(\frac{1}{3} \vec{u} - \vec{v}:\)
b) Si las coordenadas de \(\vec{a} \) y \(\vec{b} \) son \(\left(\frac{2}{5}, -3 \right) \) y \((-1, 3) \), obtén las coordenadas de los vectores:

\[
5 \vec{a} - \frac{1}{5} \vec{b}; \quad -\vec{a} + 2 \vec{b}; \quad \frac{1}{2} \vec{a} - \vec{b}
\]

Solución:

a)

b) \[5 \vec{a} + \frac{1}{5} \vec{b} = 5 \left(\frac{2}{5}, -3 \right) + \frac{1}{5} \left(-1, 3 \right) = \left(\frac{2}{5}, -15 \right) + \left(\frac{-1}{5}, \frac{3}{5} \right) = \left(\frac{9}{5}, \frac{-72}{5} \right)\]

\[-\vec{a} + 2 \vec{b} = \left(\frac{2}{5}, -3 \right) + 2 \left(-1, 3 \right) = \left(\frac{2}{5}, -3 \right) + \left(-2, 6 \right) = \left(-\frac{12}{5}, 9 \right)\]

\[\frac{1}{2} \vec{a} - \frac{1}{2} \vec{b} = \frac{1}{2} \left(\frac{2}{5}, -3 \right) - \left(-1, 3 \right) = \left(\frac{1}{5}, -\frac{3}{2} \right) - \left(-1, 3 \right) = \left(\frac{6}{5}, -\frac{9}{2} \right)\]

Ejercicio nº 4.-

a) Los vectores \(\vec{u} \) y \(\vec{v} \) son los que muestra la figura. A partir de ellos, dibuja

\[-\vec{u} - \vec{v}, -2\vec{u} + \vec{v} \quad y \quad \frac{2}{3} \vec{v} :\]

b) Si las coordenadas de los vectores \(\vec{a} \) y \(\vec{b} \) son \((-2, 1) \) y \(\left(1, -\frac{1}{4} \right) \), obtén las coordenadas de:

\[-3 \vec{a} + 4 \vec{b}; \quad -\vec{a} + \vec{b}; \quad \frac{1}{2} \vec{a} + 2 \vec{b}\]
Solución:

a)

b) \(-3\vec{a}+4\vec{b} = -3(-2,1) + 4 \left(1, \frac{-1}{4}\right) = (6, -3) + (4, -1) = (10, -4)\)

\(-\vec{a}+\vec{b} = -(2,1) + \left(1, \frac{-1}{4}\right) = (2, -1) + \left(1, \frac{-1}{4}\right) = (3, \frac{-5}{4})\)

\(\frac{1}{2}\vec{a}+2\vec{b} = \frac{1}{2}(-2,1) + 2 \left(1, \frac{-1}{4}\right) = (-1, \frac{1}{2}) + \left(2, \frac{-1}{2}\right) = (1, 0)\)

Ejercicio nº 5.-

a) A la vista de la siguiente figura, dibuja los vectores:

\(-\vec{u}+2\vec{v}; \quad \vec{u}+\frac{1}{2}\vec{v}; \quad \vec{u}-2\vec{v}\)

b) Dados los vectores \(\vec{a} \left(\frac{3}{4}, 2\right)\) y \(\vec{b} (2, -2)\), obtén las coordenadas de:

\(-\frac{1}{2}\vec{a}; \quad -2\vec{a}+\vec{b}; \quad -4\vec{a}+\vec{b}\)
Solución:

a)

Ejercicio nº 6.-

a) Escribe los vectores \(\vec{x}, \vec{y}, \vec{z} \) como combinación lineal de \(\vec{u} \) y \(\vec{v} \):

\[\vec{a} = -\frac{1}{2} \vec{b} = \left(\frac{-3}{4}, 2 \right) - \frac{1}{2} (2, -2) = \left(\frac{-3}{4}, 2 \right) - (1, -1) = \left(\frac{-7}{4}, 3 \right) \]

\[-2 \vec{a} + \vec{b} = -2 \left(\frac{-3}{4}, 2 \right) + (2, -2) = \left(\frac{3}{2}, -4 \right) + (2, -2) = \left(\frac{7}{2}, -6 \right) \]

\[-4 \vec{a} + \vec{b} = -4 \left(\frac{-3}{4}, 2 \right) + (2, -2) = (3, -8) + (2, -2) = (5, -10) \]

b) Escribe el vector \(\vec{a} (0, 17) \) com combinación lineal de \(\vec{b} \left(\frac{1}{5}, 3 \right) \) y \(\vec{c} (-1, 2) \).

Solución:

a)

b) Tenemos que encontrar dos números, \(m \) y \(n \), tales que:

\[\vec{a} = m \cdot \vec{b} + n \cdot \vec{c}, \] es decir:
(0, 17) = m \left(\frac{1}{5}, 3 \right) + n \cdot (-1, 2)

(0, 17) = \left(\frac{m}{5}, 3m \right) + (-n, 2n)

(0, 17) = \left(\frac{m}{5} - n, 3m + 2n \right)

\[
\begin{align*}
0 &= \frac{m}{5} - n \\
17 &= 3m + 2n \\
0 &= m - 5n \\
17 &= 3m + 2n
\end{align*}
\]

\[5n = m, 17 = 15n + 2n \rightarrow 17 = 17n \rightarrow n = 1\]

\[m = 5n = 5\]

Por tanto:
\[\vec{a} = 5 \cdot \vec{b} + 1 \cdot \vec{c}, \text{ es decir:}\]

(0, 17) = 5 \left(\frac{1}{5}, 3 \right) + (-1, 2)

\[\textbf{Ejercicio nº 7.-}\]

a) Expresa los vectores \(\vec{a}, \vec{b} \text{ y } \vec{c}\) como combinación lineal de los vectores \(\vec{u} \text{ y } \vec{v}\):

\[\text{Solución: a)}\]

b) Expresa el vector \(\vec{x} (5, -2)\) como combinación lineal de \(\vec{y} (1, -2)\) y \(\vec{z} \left(\frac{1}{2}, 2 \right)\).

\[\text{Solución:}\]

b) Hemos de encontrar dos números, \(m \text{ y } n\), tales que:
\[\vec{x} = m \cdot \vec{y} + n \cdot \vec{z}, \text{ es decir:}\]
\[(5, -2) = m \left(1, -2 \right) + n \left(\frac{1}{2}, 2 \right)\]
\[(5, -2) = (m, -2m) + \left(\frac{n}{2}, 2n \right)\]
\[(5, -2) = \left(m + \frac{n}{2}, -2m + 2n \right)\]

\[
\begin{align*}
5 &= m + \frac{n}{2} \\
-2 &= -2m + 2n
\end{align*}
\]

\[
\begin{align*}
10 &= 2m + n \\
-1 &= -m + n
\end{align*}
\]

\[
\begin{align*}
n &= 10 - 2m \\
n &= 10 - 2m
\end{align*}
\]

\[
\begin{align*}
n &= 10 - 2m \\
n &= 10 - 2m
\end{align*}
\]

\[
\begin{align*}
n &= 10 - 2m \\
n &= 10 - 2m
\end{align*}
\]

Por tanto:

\[
\begin{align*}
x &= \frac{11}{3} y + \frac{8}{3} z, \text{ es decir:}
\end{align*}
\]

\[(5, -2) = \frac{11}{3} \left(1, -2 \right) + \frac{8}{3} \left(\frac{1}{2}, 2 \right)\]

Ejercicio n° 8.

a) Escribe los vectores \(\vec{a}, \vec{b} y \vec{c} \) como combinación lineal de \(\vec{x} e \vec{y} \):

b) Halla las coordenadas del vector \(\vec{w} \left(1, 0 \right) \) con respecto a la base formada por \(\vec{u} \left(-\frac{1}{2}, 1 \right) \) y \(\vec{v} \left(-3, 2 \right) \)

Solución:

a)

b) Tenemos que hallar dos números, \(m \) y \(n \), tales que:

\[\vec{w} = m \vec{u} + n \vec{v}, \text{ es decir:}\]
(1, 0) = \left(-\frac{1}{2}, 1 \right) + n(-3, 2) \\
(1, 0) = \left\{ \frac{m}{2}, m \right\} + (-3n, 2n) \\
(1, 0) = \left\{ -\frac{m}{2}, -3n, m+2n \right\} \\

1 = -\frac{m}{2} - 3n \hspace{1cm} 2 = 2n - 6n \\
0 = m + 2n \hspace{1cm} -2n = m \hspace{1cm} 2 = -4n \rightarrow n = \frac{2}{-4} = -\frac{1}{2} \\
m = -2n = 1 \\

Por tanto:

\hat{w} = 1 \cdot \hat{u} + \left(-\frac{1}{2} \right) \cdot \hat{v}, es decir:

(1, 0) = \left\{ -\frac{1}{2}, 1 \right\} - \frac{1}{2} (-3, 2) \\

Las coordenadas de \hat{w} respecto a la base formada por \hat{u} y \hat{v} son: \left\{ 1, \frac{1}{2} \right\} \\

Ejercicio nº 9.-

a) Halla las coordenadas del vector \(\hat{u}(-2, -3)\) con respecto a la base formada por los vectores

\[\hat{v}(2, -\frac{1}{3}) \] y \(\hat{w}(1, -1)\)

b) Expresa los vectores \(\bar{x}, \bar{y}, \bar{z}\) como combinación lineal de los vectores \(\bar{a}\ y \bar{b}\):

Solución:

a) Hemos de hallar dos números, \(m\ y\ n\), tales que:

\[\hat{u} = m \cdot \hat{v} + n \cdot \hat{w}, \] es decir:

\[(-2, -3) = m \cdot \left(2, -\frac{1}{3} \right) + n \cdot (1, -1) \]

\[(-2, -3) = \left\{ 2m, -\frac{m}{3} \right\} + (n, -n) \]

\[(-2, -3) = \left\{ 2m + n, -\frac{m}{3} - n \right\} \]

\[-2 = 2m + n \hspace{1cm} -2 = 2m + n \hspace{1cm} -2 = 2m + n \]

\[-3 = -\frac{m}{3} - n \hspace{1cm} -9 = -m - 3n \hspace{1cm} -9 = -m - 3(-2 - 2m) \]

\[-9 = -m + 6 + 6m \rightarrow -9 = -m + 6m \rightarrow -15 = 5m \rightarrow m = -3 \]

\[n = -2 - 2m = -2 + 6 = 4 \]
Por tanto:

\[\vec{u} = -3\vec{v} + 4\vec{w}, \text{ es decir:} \]

\[(-2, -3) = -3\left(2, -\frac{1}{3}\right) + 4(1, -1) \]

Las coordenadas de \(\vec{u} \) con respecto a la base formada por \(\vec{v} \) y \(\vec{w} \) son \((-3, 4)\).

b)

Ejercicio nº 10.-

a) Expresa el vector \(\vec{x} (4,1) \) como combinación lineal de los vectores \(\vec{y} (2, -3) \) y \(\vec{z} \left(\frac{1}{2}, 1\right) \).

b) Escribe los vectores \(\vec{a}, \vec{b} \) y \(\vec{c} \) como combinación lineal de \(\vec{u} \) y \(\vec{v} \):

Solución:

a) Tenemos que hallar dos números, \(m \) y \(n \), tales que:

\[\vec{x} = m \cdot \vec{y} + n \cdot \vec{z}, \text{ es decir:} \]

\[(4, 1) = m(2, -3) + n \left(\frac{1}{2}, 1\right) \]

\[(4, 1) = (2m, -3m) + \left(\frac{n}{2}, n\right) \]

\[(4, 1) = \left(2m + \frac{n}{2}, -3m + n\right) \]

\[\begin{align*}
4 &= 2m + \frac{n}{2} \\
1 &= -3m + n
\end{align*} \]

\[\begin{align*}
8 &= 4m + n \\
8 &= 4m + n \\
8 &= 4m + n \\
8 &= 4m + n
\end{align*} \]

\[\begin{align*}
1 &= -3m + n \\
1 &= -3m + n \\
1 &= -3m + n \\
1 &= -3m + n
\end{align*} \]
$7 = 7m \rightarrow m = 1$
$n = 1 + 3m = 1 + 3 = 4$

Por tanto:

$\vec{x} = 1 \cdot \vec{y} + 4 \cdot \vec{z}$; es decir:

$(4, 1) = (2, -3) + 4 \left(\frac{1}{2}, 1 \right)$

b)

\[\begin{array}{l}
\text{Ejercicio n° 11.-}
\end{array} \]

Dados $\vec{x}(5, -4)$, $\vec{y}(3, 2)$ y $\vec{z}(1, k)$:

a) Halla el valor de k para que \vec{x} y \vec{z} formen un ángulo 90°.

b) Halla un vector unitario con la misma dirección y el mismo sentido que \vec{x}.

\textbf{Solución:}

a) Para que \vec{x} y \vec{z} formen un ángulo de 90° (sean perpendiculares), su producto escalar ha de ser igual a cero.

$\vec{x} \cdot \vec{z} = (5, -4) \cdot (1, k) = 5 - 4k = 0 \rightarrow k = \frac{5}{4}$

b) Hallamos el módulo de \vec{x}

$$\left| \vec{x} \right| = \sqrt{5^2 + (-4)^2} = \sqrt{25 + 16} = \sqrt{41}$$

El vector unitario con la misma dirección y sentido que \vec{x} será

$$\left(\frac{5}{\sqrt{41}}, \frac{-4}{\sqrt{41}} \right)$$

\textbf{Ejercicio n° 12.-}

Si $\vec{a}(1, -3)$ y $\vec{b}(m, 2)$:

a) Halla el valor de m para que \vec{a} y \vec{b} sean perpendiculares.

b) Calcula el ángulo formado por \vec{a} y \vec{c} siendo $\vec{c}(4, 2)$
Solución:

a) Para que \(\vec{a} \) y \(\vec{b} \) sean perpendiculares, su producto escalar debe ser cero:
\[
\vec{a} \cdot \vec{b} = (1, -3) \cdot (m, 2) = m - 6 = 0 \quad \rightarrow \quad m = 6
\]

b) \(\cos \left(\frac{\vec{a} \cdot \vec{c}}{\vec{a} \cdot \vec{c}} \right) = \frac{\vec{a} \cdot \vec{c}}{\|\vec{a}\| \cdot \|\vec{c}\|} = \frac{(1,3) \cdot (4,2)}{\sqrt{1^2 + (-3)^2} \cdot \sqrt{4^2 + 2^2}} = \frac{4 - 6}{\sqrt{10} \cdot \sqrt{20}} = \frac{-2}{\sqrt{200}} = -0.14
\]
\[
\rightarrow \quad \left(\frac{\vec{a} \cdot \vec{c}}{\|\vec{a}\| \cdot \|\vec{c}\|} \right) = 98.748''
\]

Ejercicio nº 13.-

Dados los vectores \(\vec{u} (-1, 4), \vec{v} (3, m) \) y \(\vec{w} (2, -3) \):

a) Calcula \(m \) para que \(\vec{u} \) y \(\vec{v} \) sean perpendiculares.

b) Halla el ángulo que forman \(\vec{u} \) y \(\vec{w} \).

Solución:

a) Para que \(\vec{u} \) y \(\vec{v} \) sean perpendiculares, su producto escalar ha de ser cero, es decir:
\[
\vec{u} \cdot \vec{v} = (-1, 4) \cdot (3, m) = -3 + 4m = 0 \quad \rightarrow \quad m = \frac{3}{4}
\]

b) \(\cos \left(\frac{\vec{u} \cdot \vec{w}}{\|\vec{u}\| \cdot \|\vec{w}\|} \right) = \frac{-2 - 12}{\sqrt{(-1)^2 + 4^2} \cdot \sqrt{2^2 + (-3)^2}} = \frac{-14}{\sqrt{17} \cdot \sqrt{13}} = -0.94
\]

Así, \(\left(\frac{\vec{u} \cdot \vec{w}}{\|\vec{u}\| \cdot \|\vec{w}\|} \right) = 160.2046''

Ejercicio nº 14.-

Considera los vectores \(\vec{x} (a, 3) \) e \(\vec{y} (-1, b) \). Halla los valores de \(a \) y \(b \) para que \(\vec{x} \) e \(\vec{y} \) sean perpendiculares y que \(|\vec{x}| = 5 \).

Solución:

1.º) Para que \(\vec{x} \) e \(\vec{y} \) sean perpendiculares, su producto escalar ha de ser cero, es decir :
\[
\vec{x} \cdot \vec{y} = (a, 3) \cdot (-1, b) = -a + 3b = 0 \quad \rightarrow \quad b = \frac{a}{3}
\]

2.º) Hallamos el módulo de \(\vec{x} \) e igualamos a 5:
\[
|\vec{x}| = \sqrt{a^2 + 3^2} = \sqrt{a^2 + 9} = 5 \quad \rightarrow \quad a^2 + 9 = 25
\]
\[a^2 = 25 - 9 = 16 \rightarrow a = \pm \sqrt{16} \rightarrow \begin{cases} a = 4 & \rightarrow b = \frac{4}{3} \\ a = -4 & \rightarrow b = -\frac{4}{3} \end{cases} \]

Por tanto, hay dos posibilidades:

\[a_1 = 4, b_1 = \frac{4}{3}; \quad a_2 = -4, b_2 = -\frac{4}{3} \]

Ejercicio nº 15.-

a) Halla el ángulo que forman los vectores \[\vec{a} \left(\frac{3}{5}, -\frac{4}{5} \right) \] y \[\vec{b} (1, 1) \]

b) ¿Cuál sería el valor de \(x \) para que el vector \(\vec{u} (1, x) \) fuera perpendicular a \(\vec{a} \left(\frac{3}{5}, -\frac{4}{5} \right) \)?

Solución:

a) \(\cos \left(\vec{a}, \vec{c} \right) = \frac{\vec{a} \cdot \vec{c}}{||\vec{a}|| \cdot ||\vec{c}||} = \frac{\frac{3}{5} \cdot \frac{3}{5} - \frac{4}{5} \cdot \frac{4}{5}}{\sqrt{\frac{9}{25} + \frac{16}{25}} \cdot \sqrt{1 + 1}} = \frac{-\frac{1}{5}}{\frac{2}{\sqrt{2}}} = -\frac{1}{2} = -0.14 \rightarrow \)

\[\rightarrow \left(\vec{a}, \vec{c} \right) = 98^\circ 48' \]

b) Para que \(\vec{u} \) y \(\vec{a} \) sean perpendiculares, su producto escalar debe ser cero.

\[\vec{u} \cdot \vec{a} = (1, x) \cdot \left(\frac{3}{5}, -\frac{4}{5} \right) = \frac{3}{5} - \frac{4x}{5} = 0 \rightarrow 3 - 4x = 0 \rightarrow x = \frac{3}{4} \]