Ejercicios de polinomios

1 Indica cuales de las siguientes expresiones son monomios. En caso afirmativo, indica su grado y coeficiente.

\[13x^3 \quad 25x^{-3} \quad 33x + 1 \quad \sqrt{2x} \quad \frac{3}{4} x^2 \quad \frac{-3}{x^2} \quad 2\sqrt{x} \]

2 Efectúa las siguientes operaciones con monomios:

1 \[2x^3 - 5x^3 = \]
2 \[3x^4 - 2x^4 + 7x^4 = \]
3 \[(2x^3) \cdot (5x^3) = \]
4 \[(2x^3 y^2) \cdot (5x^3 y z^2) = \]
5 \[(12x^3) \cdot (4x) = \]
6 \[(18x^3 y^2 z^5) \cdot (6x^3 y z^2) = \]
7 \[(2x^3 y^3)^3 = \]
8 \[(2x^3 y^2 z^4)^5 = \]
9 \[3x^3 - 5x^3 - 2x^3 = \]
10 \[(12x^3 y^5 z^4) : (3x^2 y^2 z^3) = \]

11 \[\frac{12x^3 y^5 + 18x^5 y^7 - 48x^7 y^6}{3x^4 y^2} \]

3 Di si las siguientes expresiones algebraicas son polinomios o no. En caso afirmativo, señala cuál es su grado y término independiente.

1 \[x^4 - 3x^5 + 2x^2 + 5 \]
2 \[2 \sqrt{x} + 7x^2 + 2 \]
3 \[1 - x^4 \]
4 \[\frac{2}{x^2} - x - 7 \]
5 \[x^3 + x^5 + x^2 \]
6 \[x - 2x^{-3} + 8 \]
7 \[x^3 - x - \frac{7}{2} \]
4 Escribe:

1. Un polinomio ordenado sin término independiente.
2. Un polinomio no ordenado y completo.
3. Un polinomio completo sin término independiente.
4. Un polinomio de grado 4, completo y con coeficientes impares.

5. Dados los polinomios:

 \[P(x) = 4x^2 - 1 \]
 \[Q(x) = x^3 - 3x^2 + 6x - 2 \]
 \[R(x) = 6x^2 + x + 1 \]
 \[S(x) = \frac{1}{2}x^2 + 4 \]
 \[T(x) = \frac{3}{2}x^2 + 5 \]
 \[U(x) = x^2 + 2 \]

Calcular:

1. \[P(x) + Q(x) \]
2. \[P(x) - U(x) \]
3. \[P(x) + R(x) \]
4. \[2P(x) - R(x) \]
5. \[S(x) + R(x) + U(x) \]
6. \[S(x) - R(x) + U(x) \]

6. Multiplicar:

 1. \[(x^4 - 2x^2 + 2) \cdot (x^2 - 2x + 3) = \]
 2. \[(3x^2 - 5x) \cdot (2x^3 + 4x^2 - x + 2) = \]

7. Calcula:

 1. \[\left(x^2 - \frac{1}{2}x\right)^2 \]
 2. \[(x + 2)^3 \]
 3. \[(3x - 2)^3 \]
4 \((2x + 5)^3 \)
5 \((3x - 2) \cdot (3x + 2) \)

8 Dividir:
\[(x^4 - 2x^3 - 11x^2 + 30x - 20) : (x^2 + 3x - 2) \]

9 Divide por Ruffini:
\[(x^3 + 2x + 70) : (x + 4) \]

10 Halla el resto de las siguientes divisiones:
1 \((x^5 - 2x^2 - 3) : (x - 1) \)
2 \((2x^4 - 2x^3 + 3x^2 + 5x + 10) : (x + 2) \)

11 Indica cuáles de estas divisiones son exactas:
1 \((x^3 - 5x - 1) : (x - 3) \)
2 \((x^6 - 1) : (x + 1) \)
3 \((x^4 - 2x^3 + x^2 + x - 1) : (x - 1) \)
4 \((x^{10} - 1024) : (x + 2) \)

12 Comprueba que los siguientes polinomios tienen como factores los que se indican:
1 \((x^3 - 5x - 1) \) tiene por factor \((x - 3)\)
2 \((x^6 - 1) \) tiene por factor \((x + 1)\)
3 \((x^4 - 2x^3 + x^2 + x - 1) \) tiene por factor \((x - 1)\)
4 \((x^{10} - 1024) \) tiene por factor \((x + 2)\)

13 Factorizar:
1 \[\frac{2}{5}x^4 - \frac{6}{5}x^3 + \frac{14}{15}x^2 - \]
2 \(xy - 2x - 3y + 6 = \)
3 \(25x^2 - 1 = \)
4 \(36x^6 - 49 = \)
5 \(x^2 - 2x + 1 = \)
6 \quad x^2 - 6x + 9 =
7 \quad x^2 - 20x + 100 =
8 \quad x^2 + 10x + 25 =
9 \quad x^2 + 14x + 49 =
10 \quad x^3 - 4x^2 + 4x =
11 \quad 3x^7 - 27x =
12 \quad x^2 - 11x + 30
13 \quad 3x^2 + 10x + 3
14 \quad 2x^2 - x - 1

14 Descomponer en factores y hallar las raíces de:
1 \quad P(x) = 2x^3 - 7x^2 + 8x - 3
2 \quad x^3 - x^2 - 4
3 \quad x^3 + 3x^2 - 4x - 12

15 Encontrar el valor de k para que al dividir $2x^2 - kx + 2$ por $(x - 2)$ dé de resto 4.

16 Determinar el valor de m para que $3x^2 + mx + 4$ admita $x = 1$ como una de sus raíces.

17 Hallar un polinomio de cuarto grado que sea divisible por $x^2 - 4$ y se anule para $x = 3$ y $x = 5$.

18 Calcular el valor de a para que el polinomio $x^3 - ax + 8$ tenga la raíz $x = -2$, y calcular las otras raíces.

19 Simplificar:

1 \quad \frac{x^2 - 3x}{x^2 + 3x}
2 \quad \frac{x^2 - 3x}{3 - x}
3 \quad \frac{x^2 - 5x + 6}{x^2 - 7x + 12}
4 \quad \frac{x^2 - 2x - 3}{x^2 - x - 2}
20 Operar:

\[
\frac{x + 2}{x^3 - 1} - \frac{1}{x - 1} - \\
\frac{x + 2}{x^2 + 4x + 4} \cdot \frac{x^2 - 4}{x^3 + 8} - \\
\frac{9 - 6x - x^2}{9 - x^2} \cdot \frac{x^2 - 5x - 6}{3x^2 - 9x} - \\
\left(\frac{x}{x - 1}\right) \left(\frac{x}{x - 1}\right) - \\
\frac{x}{1 + \frac{1}{1 + \frac{1}{x}}} -
\]
SOLUCIONES

1 Indica cuales de las siguientes expresiones son monomios. En caso afirmativo, indica su grado y coeficiente.

$13x^3$
Grado: 3, coeficiente: 3

$25x^{-3}$
No, porque el exponente no es un número natural.

$33x + 1$
No, porque aparece una suma.

$\sqrt{2}x$
Grado: 1, coeficiente: $\sqrt{2}$

$-\frac{3}{4}x^2$
Grado: 4, coeficiente: $-\frac{3}{4}$

$-\frac{3}{x^2}$
No, no tiene exponente natural.

$2\sqrt{x}$
No, porque la parte literal está dentro de una raíz.

2 Efectúa la siguientes operaciones con monomios:

$2x^3 - 5x^3 = -3x^3$

$3x^4 - 2x^4 + 7x^4 = 8x^4$

$(2x^3) \cdot (5x)^3 = 10x^6$

$(12x^3) : (4x) = 3x^2$

$(18x^6 y^2 z^5) : (6x^3 y z^2) = 3x^3 y z^3$

$(2x^3 y^2)^3 = 8x^9 y^6$

$(2 x^3 y^2 z^5)^5 = 32 x^{15} y^{10} z^{25}$
\[3x^3 - 5x^3 - 2x^3 = -4x^3\]

\[(12 x^3 y^5 z^4) : (3x^2 y^2 z^3) = 4xy^3 z\]

\[\frac{12x^4y^5 + 18x^5y^7 - 48x^{10}y^4}{3x^2y^2} = 4xy^3 + 6x^3y^5 - 16x^7y^4\]

3 Di si las siguientes expresiones algebraicas son polinomios o no. En caso afirmativo, señala cuál es su grado y término independiente.

1 \[x^4 - 3x^5 + 2x^2 + 5\]
Grado: 5, término independiente: 5.

2 \[\sqrt{x} + 7x^2 + 2\]
No, porque la parte literal del primer monomio está dentro de una raíz.

3 \[-x^4\]
Grado: 4, término independiente: 1.

4 \[\frac{2}{x^2} - x - 7\]
No, porque el exponente del primer monomio no es un número natural.

5 \[5x^3 + x^5 + x^2\]
Grado: 5, término independiente: 0.

6 \[x - 2x^{-3} + 8\]
No, porque el exponente del 2º monomio no es un número natural.

7 \[\frac{x^3 - x - 7}{2}\]
Grado: 5, término independiente: -7/2.

4 Escribe:

1 Un polinomio ordenado sin término independiente.
\[3x^4 - 2x\]

2 Un polinomio no ordenado y completo.
\[x - x^2 + 5 - 2x^3\]

3 Un polinomio completo sin término independiente.
Un polinomio de grado 4, completo y con coeficientes impares.

\[x^4 - x^3 - x^2 + 3x + 5 \]

Dados los polinomios:

\[P(x) = 4x^2 - 1 \]
\[Q(x) = x^3 - 3x^2 + 6x - 2 \]
\[R(x) = 6x^2 + x + 1 \]
\[S(x) = \frac{1}{2}x^2 + 4 \]
\[T(x) = \frac{3}{2}x^2 + 5 \]
\[U(x) = x^2 + 2 \]

Calcular:

1. \[P(x) + Q(x) = (4x^2 - 1) + (x^3 - 3x^2 + 6x - 2) = x^3 - x^2+ 4x^2 + 6x - 2 - 1 = x^3 + x^2 + 6x - 3 \]

2. \[P(x) - U(x) = (4x^2 - 1) - (x^2 + 2) = 4x^2 - 1 - x^2 - 2 = 3x^2 - 3 \]

3. \[P(x) + R(x) = (4x^2 - 1) + (6x^2 + x + 1) = 4x^2 + 6x^2 + x - 1 + 1 = 10x^2 + x \]

4. \[2P(x) - R(x) = 2(4x^2 - 1) - (6x^2 + x + 1) = 8x^2 - 2 - 6x^2 - x - 1 = 2x^2 - x - 3 \]

5. \[S(x) + R(x) + U(x) = (\frac{1}{2}x^2 + 4) + (3/2 x^2 + 5) + (x^2 + 2) = 1/2 x^2 + 3/2 x^2 + x^2 + 4 + 5 + 2 = 3x^2 + 11 \]

6. \[S(x) - R(x) + U(x) = (1/2 x^2 + 4) - (3/2 x^2 + 5) + (x^2 + 2) = 1/2 x^2 + 4 - 3/2 x^2 - 5 + x^2 + 2 = 1 \]

Multiplicar:

1. \[(x^4 - 2x^2 + 2) \cdot (x^2 - 2x + 3) = x^6 - 2x^5 + 3x^4 - 2x^4 + 4x^3 - 6x^2 + 2x^2 - 4x + 6 = x^6 - 2x^5 - 2x^4 + 3x^3 + 4x^2 - 6x^2 - 4x + 6 = x^6 - 2x^5 + x^4 + 4x^3 - 4x^2 - 4x + 6 \]

2. \[(3x^2 - 5x) \cdot (2x^3 + 4x^2 - x + 2) = 6x^5 + 12x^4 - 3x^3 + 6x^2 - 10x^4 - 20x^3 + 5x^2 - 10x = 6x^5 + 12x^4 - 10x^4 - 3x^3 - 20x^3 + 6x^2 + 5x^2 - 10x = 6x^5 + 2x^4 - 23x^3 + 11x^2 - 10x \]
7 Calcula:

1 \[\left(x^2 - \frac{1}{2}x \right)^3 \]

\[= -\left(x^2 \right)^3 - 2 \cdot x^2 \cdot \frac{1}{2}x + \left(\frac{1}{2}x \right) - x^4 - x^3 + \frac{1}{4}x^2 \]

2 \[(x + 2)^3 = x^3 + 3 \cdot x^2 \cdot 2 + 3 \cdot x \cdot 2^2 + 2^3 = x^3 + 6x^2 + 12x + 8 \]

3 \[(3x - 2)^3 = (3x)^3 - 3 \cdot (3x)^2 \cdot 2 + 3 \cdot 3x \cdot 2^2 - 2^3 = 27x^3 - 54x^2 + 36x - 8 \]

4 \[(2x + 5)^3 = (2x)^3 + 3 \cdot (2x)^2 \cdot 5 + 3 \cdot 2x \cdot 5^2 + 5^3 = 8x^3 + 60x^2 + 150x + 125 \]

5 \[(3x - 2) \cdot (3x + 2) = (3x)^2 - 2^2 = 9x^2 - 4 \]

8 Dividir:

\((x^4 - 2x^3 - 11x^2 + 30x - 20) : (x^2 + 3x - 2) \)

\[
\begin{array}{cccc}
\hline
x^4 & -2x^3 & -11x^2 & + 30x - 20 \\
-3x^3 & + 2x^2 \\
\hline
-5x^2 & -9x^2 & + 30x \\
5x^2 & + 15x^2 & - 10x \\
\hline
6x^2 & + 20x & - 20 \\
-3x^2 & - 18x & + 12 \\
\hline
2x & - 8
\end{array}
\]

9 Divide por Ruffini:

\((x^3 + 2x + 70) : (x + 4) \)

\[
\begin{array}{cccc}
\hline
1 & 0 & 2 & 70 \\
4 & 4 & 16 & 72 \\
\hline
1 & -4 & 18 & -2
\end{array}
\]

10 Halla el resto de las siguientes divisiones:

1 \((x^5 - 2x^2 - 3) : (x - 1) \)

\[R(1) = 1^5 - 2 \cdot 1^2 - 3 = -4 \]

2 \((2x^4 - 2x^3 + 3x^2 + 5x + 10) : (x + 2) \)
R(-2) = 2 \cdot (-2)^4 - 2 \cdot (-2)^3 + 3 \cdot (-2)^2 + 5 \cdot (-2) + 10 = 32 + 16 + 12 - 10 + 10 = 60

\[C(x) = x^4 - 4x + 18 \quad R(x) = -2 \]

11. Indica cuáles de estas divisiones son exactas:

1. \((x^3 - 5x - 1):(x - 3)\)

 \[P(3) = 3^3 - 5 \cdot 3 - 1 = 27 - 15 - 1 = 0 \]

 No es exacta.

2. \((x^6 - 1):(x + 1)\)

 \[P(-1) = (-1)^6 - 1 = 0 \]

 Exacta

3. \((x^4 - 2x^3 + x^2 + x - 1):(x - 1)\)

 \[P(1) = 1^4 - 2 \cdot 1^3 + 1^2 + 1 - 1 = 1 - 2 + 1 + 1 - 1 = 0 \]

 Exacta

4. \((x^{10} - 1024):(x + 2)\)

 \[P(-2) = (-2)^{10} - 1024 = 1024 - 1024 = 0 \]

 Exacta

12. Comprueba que los siguientes polinomios tienen como factores los que se indican:

1. \((x^3 - 5x - 1)\) tiene por factor \((x - 3)\)

 \((x^3 - 5x - 1)\) es divisible por \((x - 3)\) si y sólo si \(P(x = 3) = 0\).

 \[P(3) = 3^3 - 5 \cdot 3 - 1 = 27 - 15 - 1 = 0 \]

 \((x - 3)\) no es un factor.

2. \((x^6 - 1)\) tiene por factor \((x + 1)\)

 \((x^6 - 1)\) es divisible por \((x + 1)\) si y sólo si \(P(x = -1) = 0\).

 \[P(-1) = (-1)^6 - 1 = 0 \]

 \((x + 1)\) es un factor.

3. \((x^4 - 2x^3 + x^2 + x - 1)\) tiene por factor \((x - 1)\)

 \((x^4 - 2x^3 + x^2 + x - 1)\) es divisible por \((x - 1)\) si y sólo si \(P(x = 1) = 0\).

 \[P(1) = 1^4 - 2 \cdot 1^3 + 1^2 + 1 - 1 = 1 - 2 + 1 + 1 - 1 = 0 \]
(x - 1) es un factor.

4 \quad (x^{10} - 1024)\) tiene por factor \((x + 2)\)

\((x^{10} - 1024)\) es divisible por \((x + 2)\) si y sólo si \(P(x = -2) = 0\).

\[P(-2) = (-2)^{10} - 1024 = 1024 - 1024 = \]

\((x + 2)\) es un factor.

13 \quad \text{Factorizar:}

\[
\begin{array}{c}
1 & \frac{2}{5}x^5 - \frac{6}{5}x^4 + \frac{14}{15}x^3 - \frac{2}{5}x^2 \left(x^3 - 3x^2 + \frac{7}{3} \right) \\
2 & xy - 2x - 3y + 6 = x \cdot (y - 2) - 3 \cdot (y - 2) = (x - 3) \cdot (y - 2) \\
3 & 25x^2 - 1 = (5x + 1) \cdot (5x - 1) \\
4 & 36x^6 - 49 = (6x^3 + 7) \cdot (6x^3 - 7) \\
5 & x^2 - 2x + 1 = (x - 1)^2 \\
6 & x^2 - 6x + 9 = (x - 3)^2 \\
7 & x^2 - 20x + 100 = (x - 10)^2 \\
8 & x^2 + 10x + 25 = (x + 5)^2 \\
9 & x^2 + 14x + 49 = (x + 7)^2 \\
10 & x^3 - 4x^2 + 4x = x \cdot (x^2 - 4x + 4) = x \cdot (x - 2)^2 \\
11 & 3x^3 - 27x = 3x \cdot (x^2 - 9) = 3x \cdot (x^3 + 3) \cdot (x^3 - 3) \\
12 & x^2 - 11x + 30 \\
\end{array}
\]

\[x^2 - 11x + 30 = \]

\[
\begin{align*}
\frac{11 \pm \sqrt{11^2 - 4 \cdot 30}}{2} &= \frac{5 \pm \sqrt{121 - 120}}{2} = \frac{11 \pm 1}{2} \\
x_1 &= \frac{12}{2} = 6 \\
x_2 &= \frac{10}{2} = 5
\end{align*}
\]

\[x^2 - 11x + 30 = (x - 6) \cdot (x - 5) \]

13 \quad 3x^2 + 10x + 3

\[3x^2 + 10x + 3 = 0 \]
\[x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \]

14 \[2x^2 - x - 1 = 0 \]

\[x = \frac{1}{4} \pm \frac{\sqrt{1 + 8}}{4} = \frac{1 \pm \sqrt{9}}{4} = \frac{1 \pm 3}{4} \]

\[x_1 = \frac{4}{4} = 1 \]

\[x_2 = -\frac{2}{4} = -\frac{1}{2} \]

Las raíces son: \(x = \frac{3}{2} \) y \(x = 1 \)

14 Descomponer en factores y hallar las raíces de:

1 \[P(x) = 2x^3 - 7x^2 + 8x - 3 \]

\[P(1) = 2 \cdot 1^3 - 7 \cdot 1^2 + 8 \cdot 1 - 3 = 0 \]

\[\begin{array}{cccc}
2 & -7 & 8 & -3 \\
1 & & & \\
\hline
2 & -5 & 3 & 0
\end{array} \]

\((x - 1) \cdot (2x^2 - 5x + 3)\)

\[P(1) = 2 \cdot 1^2 - 5 \cdot 1 + 3 = 0 \]

\[\begin{array}{cccc}
2 & -5 & 3 \\
1 & & & \\
\hline
2 & -3 & 0
\end{array} \]

\((x - 1)^2 \cdot (2x - 3) = 2 (x - 3/2) \cdot (x - 1)^2 \)

Las raíces son: \(x = 3/2 \) y \(x = 1 \)

\[2x^3 - x^2 - 4 \]

\(\{ \pm 1, \pm 2, \pm 4 \} \)

\[P(1) = 1^3 - 1^2 - 4 \neq 0 \]

\[P(-1) = (-1)^3 - (-1)^2 - 4 \neq 0 \]
\[
P(2) = 2^3 - 2^2 - 4 = 8 - 4 - 4 = 0
\]

\[
\begin{array}{cccc}
1 & -1 & 0 & -4 \\
2 & 2 & 2 & 4 \\
\hline
1 & 1 & 2 & 0
\end{array}
\]

\[(x - 2) \cdot (x^2 + x + 2) \]

\[x^2 + x + 2 = 0\]

Raíz: \(x = 2\).

\[3x^3 + 3x^2 - 4x - 12\]

\{±1, ±2, ±3, ±4, ±6, ±12 \}

\[P(1) = 1^3 + 3 \cdot 1^2 - 4 \cdot 1 - 12 \neq 0\]

\[P(-1) = (-1)^3 + 3 \cdot (-1)^2 - 4 \cdot (-1) - 12 \neq 0\]

\[P(2) = 2^3 + 3 \cdot 2^2 - 4 \cdot 2 - 12 = 8 + 12 - 8 - 12 = 0\]

\[
\begin{array}{cccc}
1 & 3 & -4 & -12 \\
2 & 2 & 10 & 12 \\
\hline
1 & 5 & 6 & 0
\end{array}
\]

\[(x - 2) \cdot (x^2 + 5x + 6)\]

\[x^2 + 5x + 6 = 0\]

\[x = \frac{-5 \pm \sqrt{25 - 24}}{2} = \frac{-5 \pm 1}{2} \Rightarrow x_1 = -\frac{4}{2} = -2; x_2 = \frac{-6}{2} = -3\]

\[(x - 2) \cdot (x + 2) \cdot (x + 3)\]

Las raíces son: \(x = 2, x = -2, x = -3\).

15 Encontrar el valor de \(k\) para que al dividir \(2x^2 - kx + 2\) por \((x - 2)\) dé de resto 4.

\[P(2) = 2 \cdot 2^2 - k \cdot 2 + 2 = 4\]
10 - 2k = 4 \quad -2k = -6 \quad k = 3

16 Determinar el valor de m para que $3x^2 + mx + 4$ admita $x = 1$ como una de sus raíces.

$P(1) = 3 \cdot 1^2 + m \cdot 1 + 4 = 0$

$3 + m + 4 = 0 \quad m = -7$

17 Hallar un polinomio de cuarto grado que sea divisible por $x^2 - 4$ y se anule para $x = 3$ y $x = 5$.

$(x - 3) \cdot (x - 5) \cdot (x^2 - 4) =

(x^2 - 8x + 15) \cdot (x^2 - 4) =

= x^4 - 4x^2 - 8x^3 + 32x + 15x^2 - 60 =

= x^4 - 8x^3 + 11x^2 + 32x - 60$

18 Calcular el valor de a para que el polinomio $x^3 - ax + 8$ tenga la raíz $x = -2$, y calcular las otras raíces.

$P(-2) = (-2)^3 - a \cdot (-2) + 8 = 0 \quad -8 + 2a + 8 = 0 \quad a = 0$

$x = \frac{-2 \pm \sqrt{2^3 - 4 \cdot 4}}{2} = \frac{-2 \pm \sqrt{4 - 16}}{2} = \frac{-2 \pm \sqrt{12}}{2}$

No tiene más raíces reales.

19 Simplificar:

1. \[\frac{x^2 - 3x}{x^2 + 3x} = \frac{x(x - 3)}{x(x + 3)} = \frac{x - 3}{x + 3} \]

2. \[\frac{x^2 - 3x}{3 - x} = \frac{x(x - 3)}{3 - x} = -x \frac{x - 3}{3 - x} = -x \]
\[
\frac{x^2 + x - 2}{x^3 - x^2 - x + 1} = \frac{(x - 1) \cdot (x + 2)}{(x - 1) \cdot (x^2 - 1)} = \frac{x + 2}{x^2 - 1}
\]

3
\[
\frac{x^2 - 5x + 6}{x^2 - 7x + 12} = \frac{(x - 2) \cdot (x - 3)}{(x - 3) \cdot (x - 4)} = \frac{x - 2}{x - 4}
\]

4
\[
\frac{x^2 - 2x - 3}{x^2 - x - 2} = \frac{(x + 1) \cdot (x - 3)}{(x - 2) \cdot (x - 2)} = \frac{x - 3}{x - 2}
\]

20 Operar:

1
\[
\frac{x + 2}{x^2 - 1} - \frac{1}{x - 1} = \frac{x}{x - 1}
\]

\[x^2 - 1 = (x - 1) \cdot (x^2 + x + 1)\]

\[\text{m.c.n.} (x^2 - 1, x - 1) = (x - 1) \cdot (x^2 + x + 1)\]

\[
= \frac{x + 2 - (x^2 + x + 1)}{(x - 1) \cdot (x^2 + x + 1)} = \frac{x + 2 - x^2 - x - 1}{(x - 1) \cdot (x^2 + x + 1)} = \frac{(x - 1)}{(x - 1) \cdot (x^2 + x + 1)} = \frac{(x - 1)}{x^2 + x + 1}
\]

2
\[
\frac{x + 2}{x^2 + 4x + 4} \div \frac{x^2 - 4}{x^2 + 3x + 3} = \frac{(x + 2) \cdot (x^2 + 8)}{(x^2 + 4x + 4) \cdot (x^2 - 4)} = \frac{(x + 2) \cdot (x + 2) \cdot (x^2 - 2x + 4)}{(x + 2)^2 \cdot (x + 2) \cdot (x - 2)} = \frac{x^2 - 2x + 4}{x^2 - 4}
\]

3
\[
\frac{9 \cdot 6x \cdot x^2}{9 - x^2} \div \frac{x^2 \cdot 5x + 6}{3x^2 - 9x} = \frac{(9 - 6x \cdot x^2) \cdot (x^2 - 5x + 6)}{(9 - x^2) \cdot (3x^2 - 9x)} = \frac{(3 - x)^2 \cdot (x - 3) \cdot (x - 2)}{(3 + x) \cdot (3 - x) \cdot 3x (x - 3)} = \frac{(3 - x) \cdot (x - 2)}{3x \cdot (3 + x)}
\]
\[\left(x + \frac{x}{x-1} \right) : \left(x - \frac{x}{x-1} \right) = \frac{x \cdot (x-1) + x}{x-1} : \frac{x \cdot (x-1) - x}{x-1} = \]
\[-\frac{x^2-x+x}{x-1} : \frac{x^2-x-x}{x-1} = \frac{x^2}{x-1} : \frac{x^2-2x}{x-1} = \frac{x^2 \cdot (x-1)}{x \cdot (x-2) \cdot (x-1)} = \]
\[= \frac{x}{x-2} \]

\[\frac{x}{1 + \frac{1}{1 + \frac{1}{x}}} - \frac{x}{1 + \frac{1}{x + 1}} - \frac{x}{x + 1} - \frac{x + 1 + x}{x + 1} = \frac{x}{2x + 1} - \frac{x(x + 1)}{2x + 1} \]