Sabiendo que el ángulo B es doble que A, en el triángulo ABC, demuestra
que que si OD son las distancias de O a los lados BC y CA entonces se
verifica OD/OC = |(b-c)/a
OD = a/2
cosA
OE = b/2 cos B
cosA = (b2+c2-a2)/(2bc)=(b2+c2-b2-bc)/(2bc)=(c-b)/(2b)
cosB=(a2+c2-b2)/(2ac)=(b2+bc+c2-b2)/(2ac)=(c+b)/(2a)
OD = a(c-b)/(4b)
OE = b (b+c)/(4a)
OD/OE = a2(c-b)/(b2(b+c))=b (b+c)(c-b)/(b2(b+c)) =(c-b)/b
Pepe Martínez, 14/10/2005,
creado con GeoGebra
|