DISTRIBUCIÓN NORMAL
o campana de Gauss-Laplace


Esta distribución es frecuentemente utilizada en las aplicaciones estadísticas. Su propio nombre indica su extendida utilización, justificada por la frecuencia o normalidad con la que ciertos fenómenos tienden a parecerse en su comportamiento a esta distribución.

Muchas variables aleatorias continuas presentan una función de densidad cuya gráfica tiene forma de campana.

En otras ocasiones, al considerar distribuciones binomiales, tipo B(n,p), para un mismo valor de  p  y valores de  n  cada vez mayores, se ve que sus polígonos de frecuencias se aproximan a una curva en "forma de campana".

En resumen, la importancia de la distribución normal se debe principalmente a que hay muchas variables asociadas a fenómenos naturales que siguen el modelo de la normal

Y en general cualquier característica que se obtenga como suma de muchos factores. 

FUNCIÓN DE DENSIDAD

Empleando cálculos bastante laboriosos, puede demostrarse que el modelo de la función de densidad que corresponde a tales distribuciones viene dado por la fórmula

Representación gráfica de esta función de densidad

La distribución normal queda definida por dos parámetros, su media y su desviación típica y la representamos así 

 

FUNCIÓN DE DISTRIBUCIÓN

 

 

F(x) es el área sombreada de esta gráfica

 

TIPIFICACIÓN

Por tanto su función de densidad es

y su función de distribución es

siendo la representación gráfica de esta función

a la variable Z se la denomina variable tipificada de X, y a la curva de su función de densidad curva normal tipificada.

Característica de la distribución normal tipificada (reducida, estándar)

Aproximación de la Binomial por la Normal (Teorema de De Moivre) :

Demostró que bajo determinadas condiciones (para n grande y tanto p como q no estén próximos a cero) la distribución Binomial  B(n, p) se puede aproximar mediante una distribución normal

Debemos tener en cuenta que cuanto mayor sea el valor de n, y cuanto más próximo sea  p  a  0.5, tanto mejor será la aproximación realizada. Es decir, basta con que se verifique

gracias a esta aproximación es fácil hallar probabilidades binomiales, que para valores grandes de  n  resulten muy laboriosos de calcular.

Hay que tener en cuenta que para realizar correctamente esta transformación de una variable discreta (binomial) en una variable continua (normal) es necesario hacer una corrección de continuidad.

 


MANEJO DE TABLAS. CASOS MÁS FRECUENTES.

La distribución de la variable  Z  se encuentra tabulada

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Autor: Jesús Plaza Martínez